Copied to
clipboard

G = C22.91C25order 128 = 27

72nd central stem extension by C22 of C25

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.83C23, C22.91C25, C23.135C24, C4.402- 1+4, Q828C2, (C2×Q8)⋊16Q8, Q82(C22⋊Q8), Q8.15(C2×Q8), Q83Q815C2, (C2×C4).81C24, C4.54(C22×Q8), C2.16(Q8×C23), C4⋊C4.297C23, C4⋊Q8.341C22, C22.8(C22×Q8), (C4×Q8).219C22, (C2×Q8).488C23, C22⋊C4.101C23, (C2×C42).945C22, C22⋊Q8.241C22, C2.24(C2×2- 1+4), C42.C2.81C22, C2.26(C2.C25), (C22×C4).1209C23, (C22×Q8).499C22, C42⋊C2.226C22, C23.32C23.7C2, C23.37C23.45C2, C23.41C23.11C2, (C2×C4×Q8).57C2, (C2×Q8)(C22⋊Q8), (C2×C4).109(C2×Q8), (C2×C4⋊C4).964C22, SmallGroup(128,2234)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22.91C25
C1C2C22C23C22×C4C2×C42C2×C4×Q8 — C22.91C25
C1C22 — C22.91C25
C1C22 — C22.91C25
C1C22 — C22.91C25

Generators and relations for C22.91C25
 G = < a,b,c,d,e,f,g | a2=b2=g2=1, c2=e2=b, d2=f2=a, ab=ba, dcd-1=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >

Subgroups: 564 in 482 conjugacy classes, 430 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, Q8, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×C42, C2×C4⋊C4, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C22×Q8, C2×C4×Q8, C23.32C23, C23.37C23, C23.41C23, Q83Q8, Q82, C22.91C25
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, C22×Q8, 2- 1+4, C25, Q8×C23, C2×2- 1+4, C2.C25, C22.91C25

Smallest permutation representation of C22.91C25
On 64 points
Generators in S64
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 51 47)(2 48 52 60)(3 57 49 45)(4 46 50 58)(5 26 36 14)(6 15 33 27)(7 28 34 16)(8 13 35 25)(9 29 21 17)(10 18 22 30)(11 31 23 19)(12 20 24 32)(37 41 61 53)(38 54 62 42)(39 43 63 55)(40 56 64 44)
(1 41 3 43)(2 44 4 42)(5 20 7 18)(6 19 8 17)(9 15 11 13)(10 14 12 16)(21 27 23 25)(22 26 24 28)(29 33 31 35)(30 36 32 34)(37 45 39 47)(38 48 40 46)(49 55 51 53)(50 54 52 56)(57 63 59 61)(58 62 60 64)
(1 23 51 11)(2 24 52 12)(3 21 49 9)(4 22 50 10)(5 62 36 38)(6 63 33 39)(7 64 34 40)(8 61 35 37)(13 41 25 53)(14 42 26 54)(15 43 27 55)(16 44 28 56)(17 57 29 45)(18 58 30 46)(19 59 31 47)(20 60 32 48)
(2 52)(4 50)(5 36)(7 34)(10 22)(12 24)(14 26)(16 28)(18 30)(20 32)(38 62)(40 64)(42 54)(44 56)(46 58)(48 60)

G:=sub<Sym(64)| (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,48,52,60)(3,57,49,45)(4,46,50,58)(5,26,36,14)(6,15,33,27)(7,28,34,16)(8,13,35,25)(9,29,21,17)(10,18,22,30)(11,31,23,19)(12,20,24,32)(37,41,61,53)(38,54,62,42)(39,43,63,55)(40,56,64,44), (1,41,3,43)(2,44,4,42)(5,20,7,18)(6,19,8,17)(9,15,11,13)(10,14,12,16)(21,27,23,25)(22,26,24,28)(29,33,31,35)(30,36,32,34)(37,45,39,47)(38,48,40,46)(49,55,51,53)(50,54,52,56)(57,63,59,61)(58,62,60,64), (1,23,51,11)(2,24,52,12)(3,21,49,9)(4,22,50,10)(5,62,36,38)(6,63,33,39)(7,64,34,40)(8,61,35,37)(13,41,25,53)(14,42,26,54)(15,43,27,55)(16,44,28,56)(17,57,29,45)(18,58,30,46)(19,59,31,47)(20,60,32,48), (2,52)(4,50)(5,36)(7,34)(10,22)(12,24)(14,26)(16,28)(18,30)(20,32)(38,62)(40,64)(42,54)(44,56)(46,58)(48,60)>;

G:=Group( (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,48,52,60)(3,57,49,45)(4,46,50,58)(5,26,36,14)(6,15,33,27)(7,28,34,16)(8,13,35,25)(9,29,21,17)(10,18,22,30)(11,31,23,19)(12,20,24,32)(37,41,61,53)(38,54,62,42)(39,43,63,55)(40,56,64,44), (1,41,3,43)(2,44,4,42)(5,20,7,18)(6,19,8,17)(9,15,11,13)(10,14,12,16)(21,27,23,25)(22,26,24,28)(29,33,31,35)(30,36,32,34)(37,45,39,47)(38,48,40,46)(49,55,51,53)(50,54,52,56)(57,63,59,61)(58,62,60,64), (1,23,51,11)(2,24,52,12)(3,21,49,9)(4,22,50,10)(5,62,36,38)(6,63,33,39)(7,64,34,40)(8,61,35,37)(13,41,25,53)(14,42,26,54)(15,43,27,55)(16,44,28,56)(17,57,29,45)(18,58,30,46)(19,59,31,47)(20,60,32,48), (2,52)(4,50)(5,36)(7,34)(10,22)(12,24)(14,26)(16,28)(18,30)(20,32)(38,62)(40,64)(42,54)(44,56)(46,58)(48,60) );

G=PermutationGroup([[(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,51,47),(2,48,52,60),(3,57,49,45),(4,46,50,58),(5,26,36,14),(6,15,33,27),(7,28,34,16),(8,13,35,25),(9,29,21,17),(10,18,22,30),(11,31,23,19),(12,20,24,32),(37,41,61,53),(38,54,62,42),(39,43,63,55),(40,56,64,44)], [(1,41,3,43),(2,44,4,42),(5,20,7,18),(6,19,8,17),(9,15,11,13),(10,14,12,16),(21,27,23,25),(22,26,24,28),(29,33,31,35),(30,36,32,34),(37,45,39,47),(38,48,40,46),(49,55,51,53),(50,54,52,56),(57,63,59,61),(58,62,60,64)], [(1,23,51,11),(2,24,52,12),(3,21,49,9),(4,22,50,10),(5,62,36,38),(6,63,33,39),(7,64,34,40),(8,61,35,37),(13,41,25,53),(14,42,26,54),(15,43,27,55),(16,44,28,56),(17,57,29,45),(18,58,30,46),(19,59,31,47),(20,60,32,48)], [(2,52),(4,50),(5,36),(7,34),(10,22),(12,24),(14,26),(16,28),(18,30),(20,32),(38,62),(40,64),(42,54),(44,56),(46,58),(48,60)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A···4P4Q···4AL
order1222224···44···4
size1111222···24···4

44 irreducible representations

dim1111111244
type+++++++--
imageC1C2C2C2C2C2C2Q82- 1+4C2.C25
kernelC22.91C25C2×C4×Q8C23.32C23C23.37C23C23.41C23Q83Q8Q82C2×Q8C4C2
# reps11266124822

Matrix representation of C22.91C25 in GL6(𝔽5)

100000
010000
004000
000400
000040
000004
,
400000
040000
004000
000400
000040
000004
,
030000
300000
000010
000001
004000
000400
,
400000
040000
000200
002000
000003
000030
,
040000
100000
003000
000300
000020
000002
,
400000
040000
000100
004000
000001
000040
,
400000
040000
001000
000100
000040
000004

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;

C22.91C25 in GAP, Magma, Sage, TeX

C_2^2._{91}C_2^5
% in TeX

G:=Group("C2^2.91C2^5");
// GroupNames label

G:=SmallGroup(128,2234);
// by ID

G=gap.SmallGroup(128,2234);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,232,1430,352,570,136,1684]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=g^2=1,c^2=e^2=b,d^2=f^2=a,a*b=b*a,d*c*d^-1=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽